TRANSFORMADA DE GRACELI COM A TRANSFORMADA DE HILBERT.
Transformada de Hilbert
Em matemática, a transformada de Hilbert é uma transformada integral que mapeia uma função f(x) em uma outra, û(x) (portanto, no mesmo domínio[nota 1][nota 2]).[1][2]
Ela recebeu esse nome em homenagem ao matemático alemão David Hilbert, que, em 1905, estudou uma transformação similar com vistas a estudar o Problema de Riemann-Hilbert sobre o círculo. Não foi, portanto, o próprio Hilbert que definiu essa transformada, e sim o matemático britânico Godfrey Harold Hardy, em 1925 (ver abaixo. Pesquisas posteriores fixaram a forma da transformação como hoje é usada, mostraram sua utilidade em campos diferentes de aplicação, como a análise harmónica,[2] o processamento digital de sinais,[3] a óptica,[1] a sismologia,[1] a física quântica,[3] a fisiologia[4] e a acústica,[4] e introduziram variações, como a Transformada Discreta de Hilbert, a Transformada de Hilbert Bilinear e a Transformada de Hilbert Trilinear.
A utilidade da transformada de Hilbert advém do fato de a função g(x) = f(x) + i·û(x) (onde i é unidade imaginária) ser sempre uma função analítica (também chamada de função regular e função holomorfa) na metade superior do plano complexo, ou seja, uma função que é infinitamente diferenciável nesse domínio. Em outras palavras, em toda função analítica, a parte imaginária é a transformada de Hilbert da parte real.[1][nota 3] Assim, a transformação de Hilbert é uma maneira prática de se obter a conjugada de uma função real qualquer f(x). Daí decorrem diversas aplicações práticas:
- Para obter-se uma representação analítica de uma função. Em diversas aplicações, é mais fácil trabalhar com a função complexa g(x), por ser analítica, do que com a função real f(x).[1]
- Como uma maneira de generalizar o conceito de fasor em aplicações onde se lida com sinais de frequências variáveis no tempo. Neste caso, diferentemente da transformada de Fourier e outras relacionadas, representa-se o sinal não como uma soma dos seus componentes senoidais, e sim como um produto de duas funções, uma de alta e outra de baixa frequência.[5]
- Como uma ferramenta para demodular um sinal, obtendo o seu envelope (ou envoltória).[6]
Este verbete trata principalmente da transformada "contínua" de Hilbert, isto é, a transformada de funções definidas em um espaço euclideano. A transformação pode ser aplicada também em espaços discretos (ver Transformada discreta de Hilbert, mais abaixo).) e espaços contínuos não-euclideanos, como um toroide[3] (ver Extensões em outros espaços, mais abaixo).
g(x) = f(x) + i·û(x) X X FLUXOS QUÂNTICOS X SDCTIE GRACELI.
Definição
A transformada de Hilbert de uma função f(x) é definida por:
X FLUXOS QUÂNTICOS X SDCTIE GRACELI.
Convenções
Como também acontece com outras transformadas, o sinal da integral na definição é matéria de convenção e pode ser invertido sem mudança nas propriedades essenciais da Transformada de Hilbert. Tal inversão se encontra frequentemente na literatura.
Também é frequente expressar a variável independente na transformada como y, em lugar de x, para deixar mais clara a relação entre as funções û(y) e f(x). Tal convenção não foi usada aqui.
Neste verbete, como se verifica em toda a literatura, x é sempre uma variável real. Portanto, f(x) e û(x) são sempre funções reais. s e z denotam variáveis complexas. k (minúscula), l, m e n são constantes reais inteiras. a e b são constantes complexas. K (maiúscula), p e q são constantes reais. t e ω são variáveis reais, denotando sempre as grandezas físicas tempo e frequência angular. Evitou-se referenciar a grandeza física frequência linear, de forma a evitarem-se ambiguidades; quando necessário, usa-se a expressão .
Comentários
Postar um comentário